Finite Element Method with Superconvergence for Nonlinear Hamiltonian Systems
نویسندگان
چکیده
This paper is concerned with the finite element method for nonlinear Hamiltonian systems from three aspects: conservation of energy, symplicity, and the global error. To study the symplecticity of the finite element methods, we use an analytical method rather than the commonly used algebraic method. We prove optimal order of convergence at the nodes tn for mid-long time and demonstrate the symplecticity of high accuracy. The proofs depend strongly on superconvergence analysis. Numerical experiments show that the proposed method can preserve the energy very well and also can make the global trajectory error small for long time. Mathematics subject classification: 65N30.
منابع مشابه
Superconvergence in the generalized finite element method
In this paper, we address the problem of the existence of superconvergence points of approximate solutions, obtained from the Generalized Finite Element Method (GFEM), of a Neumann elliptic boundary value problem. GFEM is a Galerkin method that uses non-polynomial shape functions, and was developed in [4, 5, 24]. In particular, we show that the superconvergence points for the gradient of the ap...
متن کاملHigh accuracy analysis of anisotropic finite element method for a class of nonlinear degenerate wave equation
The convergence analysis of the bilinear finite element method to a class of non-linear degenerate wave equation on anisotropic meshes is considered in this paper. Moreover, the global superconvergence for semidiscrete scheme is proposed through interpolation instead of the Ritz Volterra projection of the exact solution.
متن کاملInvestigation of Nonlinear Behavior of Composite Bracing Structures with Concrete Columns and Steel Beams (RCS) Applying Finite Element Method
The composite structural system (RCS) is a new type of moment frame, which is including a combination of concrete columns (RC) and steel beams (S). These structural systems have the advantages of both concrete and steel frames [1]. In previous research on composite structures, there are some studies regarding RCS composite conections, but there is no investigation about seismic resisting system...
متن کاملSuperconvergence and time evolution of discontinuous Galerkin finite element solutions
In this paper, we study the convergence and time evolution of the error between the discontinuous Galerkin (DG) finite element solution and the exact solution for conservation laws when upwind fluxes are used. We prove that if we apply piecewise linear polynomials to a linear scalar equation, the DG solution will be superconvergent towards a particular projection of the exact solution. Thus, th...
متن کاملThe Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation
In this manuscript we construct simple, efficient and asymptotically correct a posteriori error estimates for discontinuous finite element solutions of scalar firstorder hyperbolic partial differential problems on triangular meshes. We explicitly write the basis functions for the error spaces corresponding to several finite element spaces. The leading term of the discretization error on each tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010